

Devereaux Sellers, MD, MBA

Department of Clinical Informatics

Department of Pathology

The MetroHealth System

Case Western Reserve University

June 7, 2023

Current Happenings

- Wrapping up any outstanding projects
- Reviewing for Informatics Boards
- Looking forward to my upcoming 2 weeks of vacation

Completed Epic Training

- APL 150: Pathologist Builder
- APL 250: Anatomic Pathology Administration
- CLN 145: Notecraft for Physicians
- CLN 150: Physician Builder
- CLN 160: Advance Physician Builder
- CLN 171: Physician Builder Analytics
- CLN 250: Epic User and Security
- LAB 400: Integrated Beaker Build
- Physician Power User
- Beaker Anatomic Pathology Fundamentals

Certificate In Biomedical And Health Informatics

- CRSP 401: Introduction to Clinical Research
- HSMC 432: Introduction to Health Informatics
- PQHS 416: Computing In Biomedical Health Informatics
- HSMC 420: Healthcare Finance

What's Next

- Preparing for my transition to staff in the Department of Pathology as a Pathologist Informaticist and Medical Director for LIS
- Lean Six Sigma Yellow Belt sometime in late
 2023 or early 2024

Presentations

AACC 2021 National Conference

- Abstract / Poster
- Accuracy between Two Anti-Nuclear Antibody Platforms: Multiplex Bead-Based Technology vs.
 Immunofluorescence Assay

API 2022 National Conference

- Invited to be a guest speaker at the Association for Pathology Informatics 2022 National Conference
- Boot camp talk on the Fundamentals of Computer Programming

 Invited to join the Training and Education committee for API following the boot camp

API 2023 National Conference

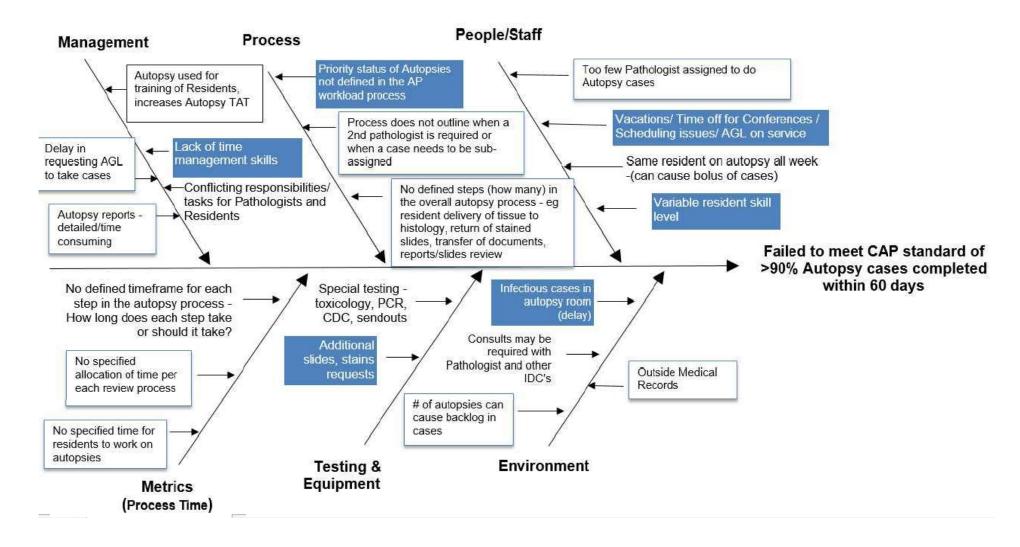
- Abstract
- Poster presentation
- Improving Autopsy Turnaround Time Using Lean Six Sigma Principles with Define-Measure-Analyze-Improve-Control Cycles

CAP 2023 National Conference

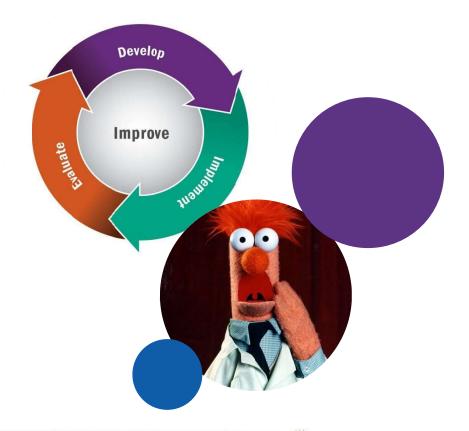
- Upcoming conference October 9, 2023
- Abstract
- Poster presentation
- Evaluating whether an association between hepatitis viruses and lymphoma among patients with HIV exists
- Analysis shows there is an association between HIV-HBV co-infection and lymphoma, but no association between HIV-HCV co-infection and lymphoma

Projects

Capstone


Need to Improve Autopsy Turn-Around-Time

- Failure to meet the CAP standard of 90% of autopsy cases signed out within 60 days
- Lean Six Sigma is a tried and tested approach to quality improvement that has been used successfully in the
- Used Lean Six Sigma techniques (Ishikawa diagram, workflow map, process map, and value stream) to address issues in the entire process
- Decided on a DMAIC (Define Measure Analyze – Improve – Control) cycle approach
 - Similar to PDSA (Plan Do Study Act)



Fishbone Diagram: Autopsy TAT

DMAIC Cycle 1

- We targeted the inconsistent use of a backup pathologist due to lack of guidelines for when to assign them cases. To address this we implemented a cap to the pathologists' active case load and tracked this via an Excel® spreadsheet.
- Next we targeted our trainees' time
 management and instituted calendar
 reminders for the trainees by having Outlook®
 calendar entries automatically created via an
 Excel® spreadsheet containing important
 deadlines with regards to the autopsy report.

Autopsy Attending Coverage Day of Service (Day the Autopsy is performed)							
Responsible	Autopsy	Accession	Signed Out		Assigned	New Autopsies For	
Attending	Number	Date	Date	TAT	Resident	The Current Week	
Dr. Baggins	A22-100	9/12/2022	12/12/2022	66		Dr. Baggins	C
Dr. Greenleaf	A22-101	9/28/2022	12/12/2022	54		Dr. Greenleaf	6
Dr. Baggins	A22-102	9/28/2022	11/25/2022	43		Dr. Gamgee	C
Dr. Gamgee	A22-103	10/10/2022	12/5/2022	41		Dr. Oakenshield	0
Dr. Oakenshield	A22-104	10/25/2022	12/10/2022	34			
Dr. Oakenshield	A22-105	10/26/2022	12/11/2022	33			
Dr. Oakenshield	A22-106	10/27/2022	12/12/2022	33			
Dr. Greenleaf	A22-107	10/28/2022				New Autopsies For	
Dr. Greenleaf	A22-108	11/12/2022				The Current Month	
Dr. Greenleaf	A22-109	11/15/2022				Dr. Baggins	0
Dr. Greenleaf	A22-110	11/20/2022				Dr. Greenleaf	7
Dr. Greenleaf	A22-111	11/22/2022				Dr. Gamgee	0
Dr. Greenleaf	A22-112	11/28/2022				Dr. Oakenshield	0
Dr. Greenleaf	A22-113	12/2/2022					
Dr. Greenleaf	A22-114	12/5/2022				Total Outstanding	
Dr. Greenleaf	A22-115	12/5/2022				Autopsies	
Dr. Greenleaf	A22-116	12/7/2022				Dr. Baggins	0
Dr. Greenleaf	A22-117	12/8/2022				Dr. Greenleaf	13
Dr. Greenleaf	A22-118	12/9/2022				Dr. Gamgee	0
Dr. Greenleaf	A22-119	12/9/2022				Dr. Oakenshield	0
						Annual Average	
						Turn Around Time	
						Dr. Baggins	54.50
						Dr. Greenleaf	54.00
						Dr. Gamgee	41.00
						Dr. Oakenshield	33.33

Please read before continuing:

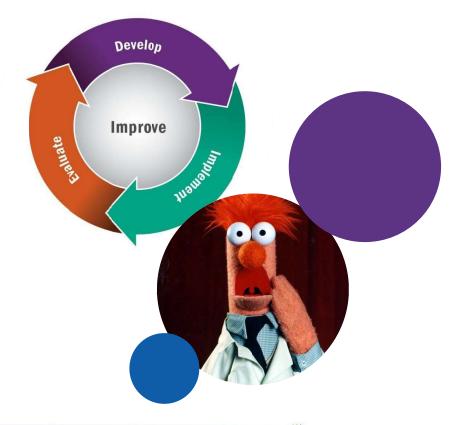
The following spreadsheet will automatically generate the start dates for each of the items under the Subject heading below, after entering the Autopsy Start Date. Once you have entered the autopsy start date below press enter and all other dates will be filled in automatically. Once those dates have been populated you may then press the Add Dates To Calendar button below. You only need to left click the button one time and within less than a minute or so your

Outlook calendar will have created reminders for each of the events related to the autopsy. The dates that are calculated are all weekdays as the formula takes into consideration weekends.

Please do not add rows or make any changes to this worksheet...Thanks!!!

Enter Autopsy Start Date:	11/28/2022
Enter Autopsy Number (Axx-xxx):	A22-050
Infectious Autopsy	

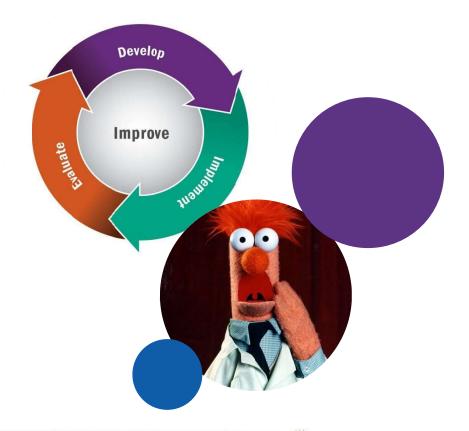
Subject	Location	Due Date
Organ Review and PAD for Autopsy A22-050	Morgue	11/29/22
Gross Description for Autopsy A22-050	Office	12/01/22
Clinical History for Autopsy A22-050	Office	12/07/22
Initial Slide Reivew and schedule reivew with attending for Autopsy A22-050	Office	12/16/22
30-day Reminder for A22-050	Office	01/09/23


|--|

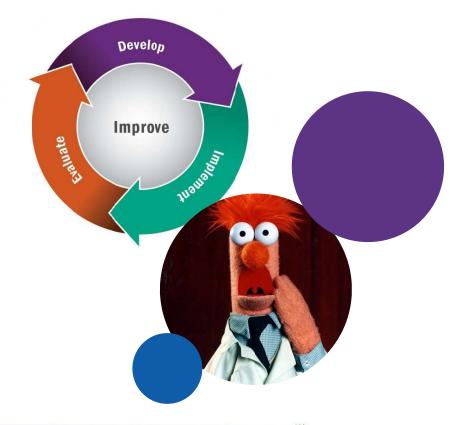
Autopsy Due Date: 01/27/23

Turnaround Time Days Remaining: 38.00

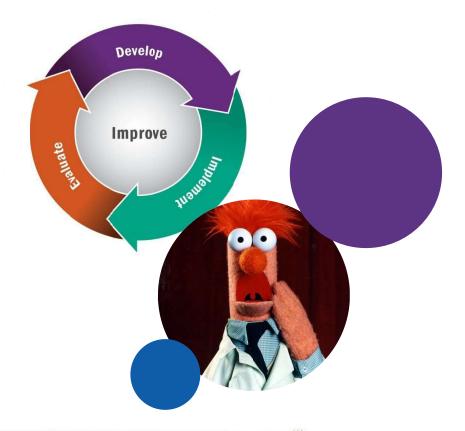
DMAIC Cycle 1

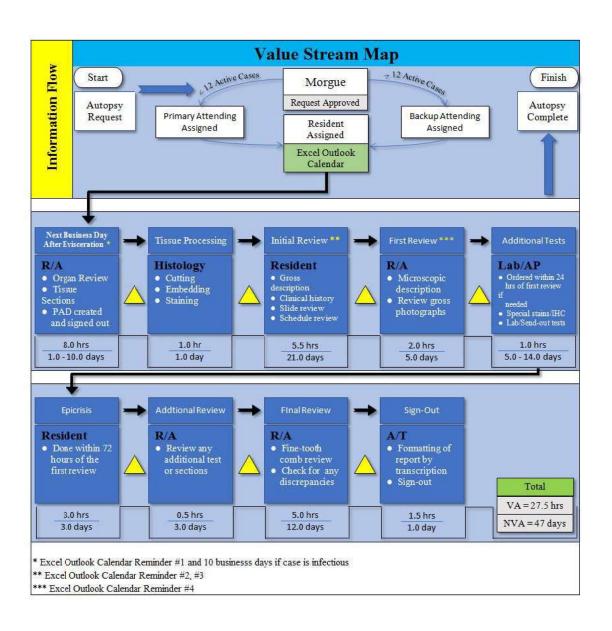

- We had 31 autopsies in our preimplementation period (accession date July 2020 through December 2020)
- We had 47 autopsies to review in our DMAIC cycle I post-implementation period (accession date August 2021 through January 2022).

DMAIC Cycle 1 Results


- Welch's t-test between our preimplementation period and our post cycle I interventions period revealed a statistically significant difference in mean turnaround times
 - (t = 4.61984, p = 0.0000176)
- Interrupted time series analysis using R® to verify that the changes in TAT we were seeing were actually due to our interventions and not to secular trends. The analysis showed the change in TAT was significant and not due to secular trends.
 - (-24.0 (-38.10-[-9.89]), p < 0.01).

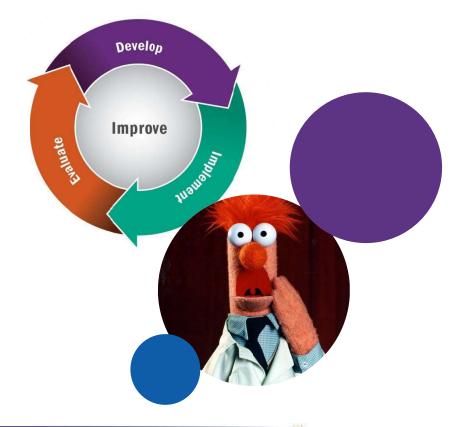
DMAIC Cycle 1


- Overall our TAT decreased, but we still fell short of consistently meeting the CAP requirement
- What next?

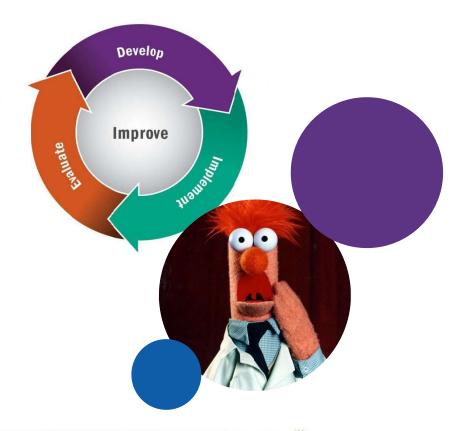


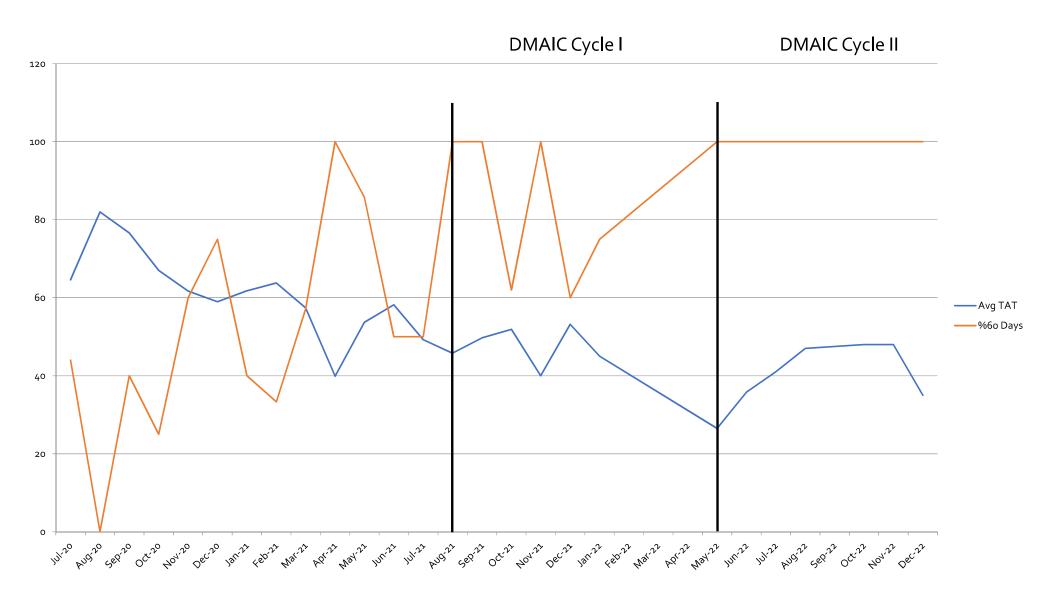
DMAIC Cycle 2

- The second cycle we used a process map and a value stream to identify non-value added time and rework.
- Both were identified
- To address this we created dictation friendly autopsy gross description templates in our LIS and implemented realtime dictation.



DMAIC Cycle 2


 We had 25 autopsies to review in our DMAIC cycle II post-implementation period (accession date May 2022 through December 2022)



DMAIC Cycle 2

- Welch's t-test between our post cycle I interventions and our post cycle II interventions revealed that there was no statistically significant difference in mean turnaround times
 - (t = 1.80812, p = 0.0755889)
- Interrupted time series analysis using R® to verify that the changes in TAT we were seeing were actually due to our interventions and not to secular trends. The analysis showed that the change in TAT was not significant
 - (-6.85 (-22.03-8.33), p = 0.35).

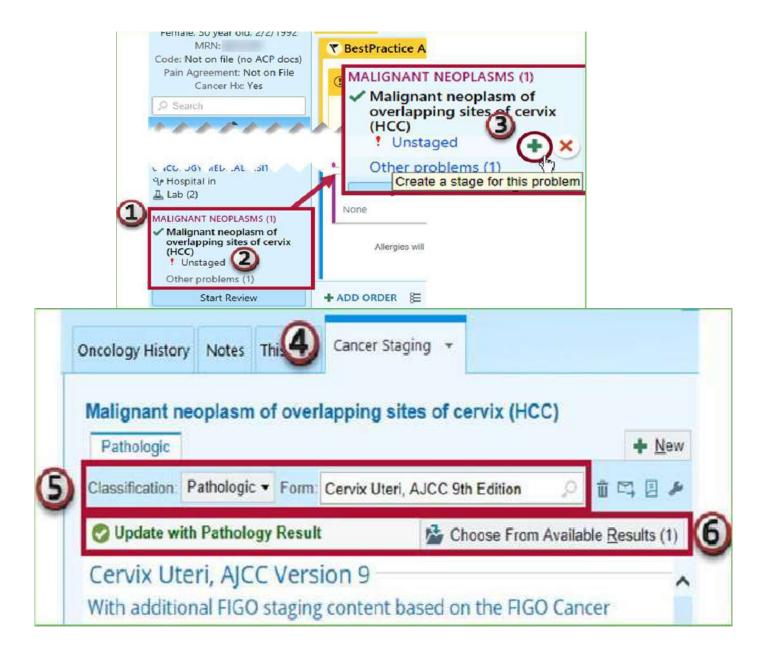


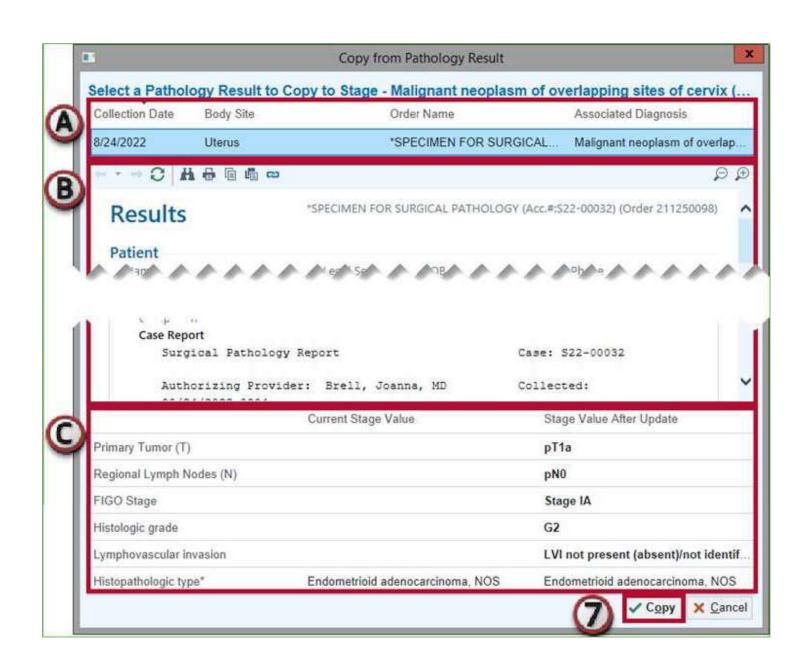
Conclusion

 Using Lean Six Sigma methods we were able to significantly reduce our autopsy turnaround times and better comply with the CAP guidelines.

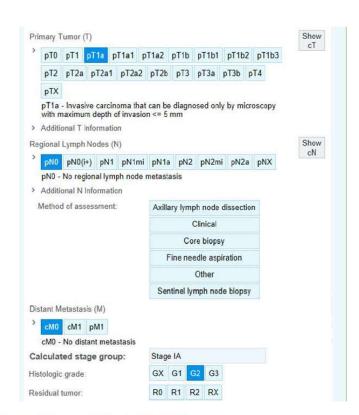
Beaker Updating Beacon Automatically

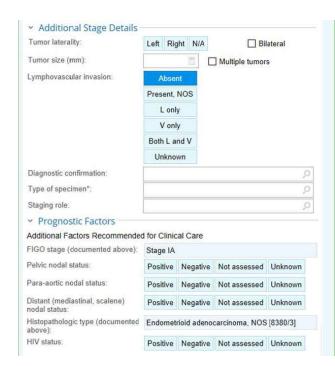
- Getting discrete data from Beaker to Beacon
 - Beaker is the LIS module
 - Beacon is the Oncology module
- Reducing clicks for oncologists
- Avoiding potential errors from the manual transfer of data





▲ ENDOMETRIUM


8th Edition - Protocol posted: 12/17/2021


SPECIMEN			
Procedure	Total hysterectomy and bilateral salpingo-oophorectomy		
Hysterectomy Type	Laparoscopic		
Specimen Integrity	intact		
TUMOR			
Tumor Site	Endometrium		
Tumor Size	Greatest Dimension (Centimeters): 8.0 cm		
Additional Dimension (Centimeters)	5.4 cm		
	3.8 cm		
Histologic Type	Endometrioid carcinoma, NOS		
	No specific molecular profile (NSMP) endometrioid carcinoma		
Histologic Grade	FIGO grade 2		
Two-Tier Grading System	Low grade (encompassing FIGO 1 and 2)		
Myometrial Invasion	Present		
Depth of Myometrial Invasion	3 mm		
Myometrial Thickness	20 mm		
Percentage of Myometrial Invasion	15 %		
Adenomyosis	Present, uninvolved by carcinoma		
Uterine Serosa Involvement	Not identified		
Lower Uterine Segment Involvement	Not identified		
Cervical Stromal Involvement	Not identified		
Other Tissue / Organ Involvement	Not applicable		
Peritoneal / Ascitic Fluid	Not submitted / unknown		
Lymphovascular Invasion (LVI)	Not identified		
MARGINS			
Margin Status	All margins negative for invasive carcinoma		
Closest Margin(s) to Invasive Carcinoma	Ectocervical / vaginal cuff		
Distance from Invasive Carcinoma to Closest Margin	58 mm		
REGIONAL LYMPH NODES			
Regional Lymph Node Status	All regional lymph nodes negative for tumor cells		

Smaller Projects

Tracking Patients for Cancer Care Follow-up

- Thinking about follow-up care for patients who have a biopsy result positive for cancer
- Track patients with a positive biopsy result to see how many are being seen by an oncology service (medical, radiation, surgical)
- The report will look at patients with a positive biopsy
 - 6 months retrospectively to see how many were seen by an oncology service and how many patients were not
 - Look 2 months into the future to see how many have a scheduled appointment with an oncology service (radiation, medical, surgical)

Replacing Abbreviations in CBC

- Currently when a patient receives the results of a CBC the only components that are not abbreviated are Hemoglobin, Hematocrit, and Platelets. For all other components the patient see the abbreviations (i.e. RBC, WBC, MCV...)
- In order to create more patient friendly pathology reports we want to have these abbreviations spelled out. So all components of the CBC will have the abbreviation replaced with the non-abbreviated terminology.
- This is already being done for the lipid panel.
- Next steps would be to think about other labs that should have the external name not show an abbreviation (Thyroid function test, liver function test, etc...)

LOINC Mapping

- LIS is reviewing all offered labs to see how many of those do not have an associated LOINC code and looking at all unmapped LOINC codes to see which should be mapped (these two lists do not match up 100% of the time)
- Currently our procedure does not state that when a current test is changed (method, reagent, specimen source) or a new test is added a LOINC should be mapped
 - A new procedure is being written to include this important detail
 - This should help keep everything current and mapped going forward

MetroHealth

Clinical Informatics Fellowship In Review

Eric Kim, MD, PhD

6/14/2023

Biomedical Informatics Committee Meeting

Formal certifications

Epic certifications

- Physician builder
- Physician builder analytics
- Notecraft for physican builders
- Chronicles programmer

Clinical informatics certificate program

- Introduction to clinical research
- Health care information systems
- Computational biomedical informatics
- Healthcare finance

Track My Health: Consumer grade device integration

Consolidated into: MC105 MyChart Patient-Driven Monitoring

Apple HealthKit

- Height
- Weight
- Pulse
- Blood Pressure
- Step Count
- Blood Glucose
- Temperature
- Pulse Oximetry
- Peak Flow

Google Fit

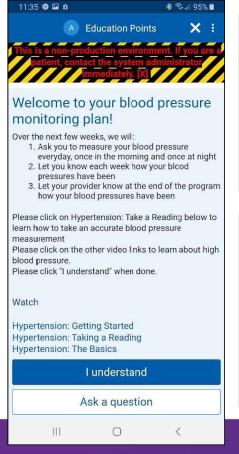
- Height
- Weight
- Pulse
- Blood Pressure
- Step Count
- Blood Glucose
- Distance walking/running

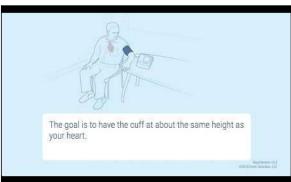
Withings

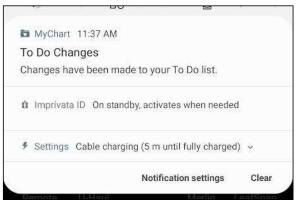
- Weight
- Blood Pressure
- Pulse

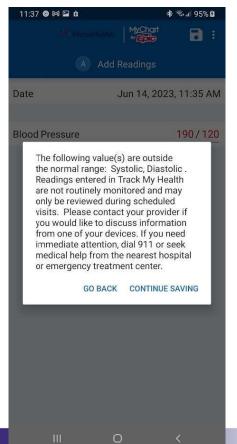
Fitbit

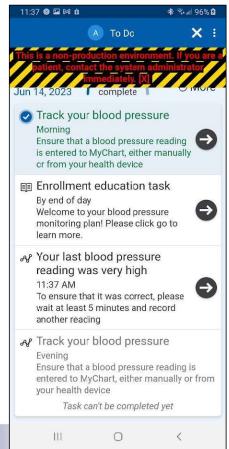
- Steps
- Weight

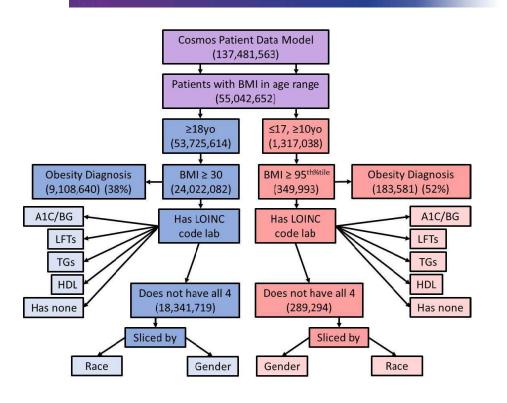

Track My Health: Detailed home biometry for clinical decision r



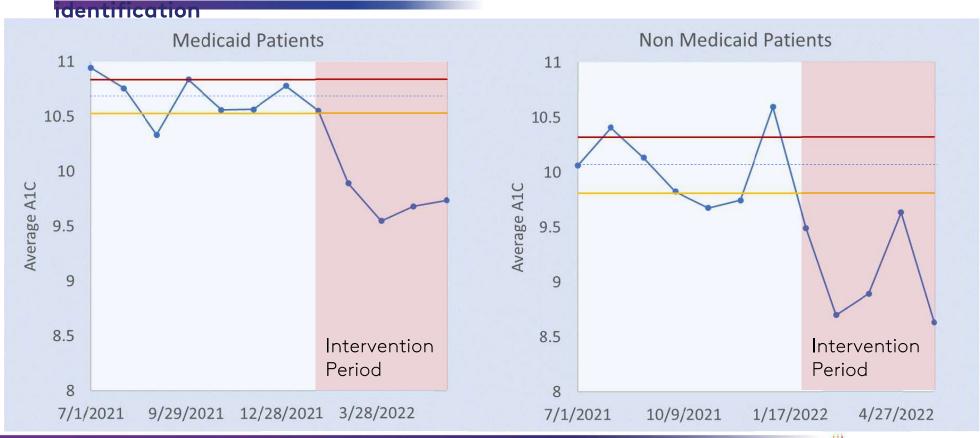





Hypertension Care Companion: Patient facing virtual care

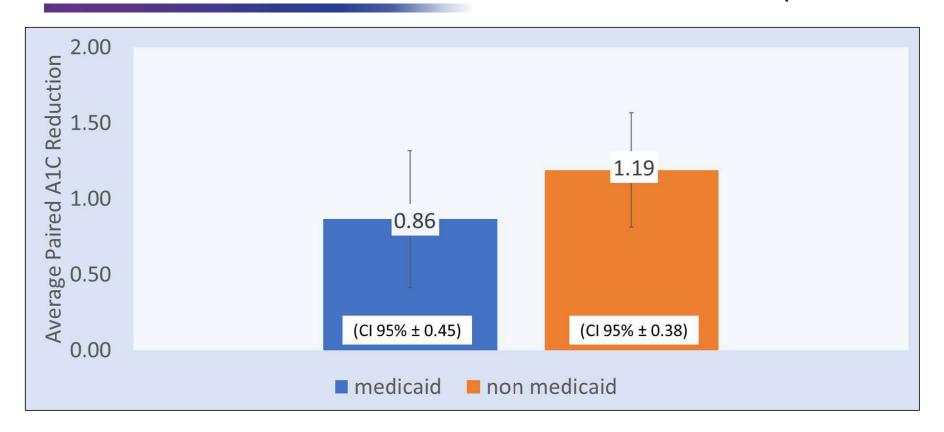


COSMOS: Metabolic syndrome screening in pediatric patients


Characteristic	Adult	Pediatric
		rediatric
BMI consistent with obesity	45%	27%
	(24,022,082/53,725,614)	(349,993/1,317,038)
Obesity BMI with diagnosis	38%	52%
of obesity	(9,108,640/24,022,082)	(183,581/349,993)
Among patients with BMI in		
obese range		
HDL performed	40%	28%
	(9,676,508/24,022,082)	(97,943/349,993)
TG performed	42%	28%
_	(10,000,474/24,022,082)	(98,367/349,993)
Fasting BG or A1C	36%	27%
performed	(8,614,323/24,022,082)	(94,790/349,993)
LFTs performed	55%	33%
_	(13,245,496/24,022,082)	(115,045/349,993)
Without all 4 metabolic	76%	83%
syndrome labs performed	(18,341,719/24,022,082)	(289,294/349,993)
With no metabolic	36%	59%
syndrome labs performed	(8,674,884/24,022,082)	(204,788/349,993)

Characteristic	Adult	Pediatric
Meeting 3+ of 5 criteria for	31%	3%
metabolic syndrome	(7,603,048/24,317,964)	(34,364/1,063,952)
diagnosis		

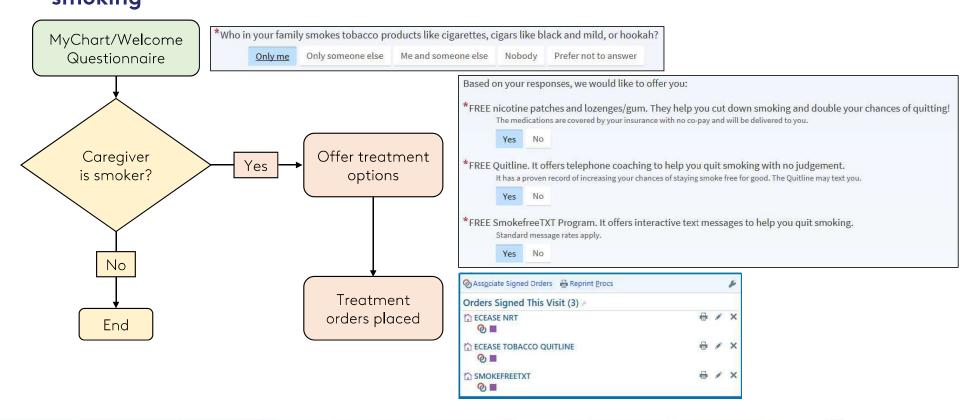
MetroHealth


Kim EG, Kaelber DC. Phenotypic prevalence of obesity and metabolic syndrome among an underdiagnosed and underscreened population of over 50 million children and adults. Front Genet. 2022;13:961116. Published 2022 Sep 6. doi:10.3389/fgene.2022.961116

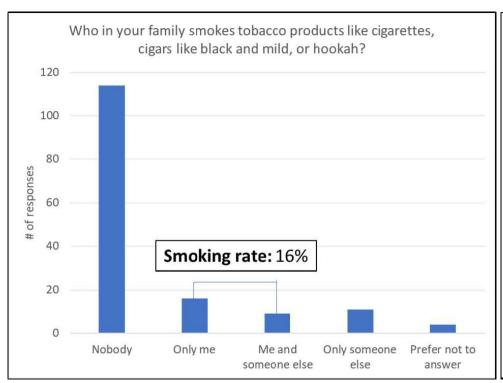
Diabetic Outreach: Ohio City Clinic diabetic care outreach and barriers

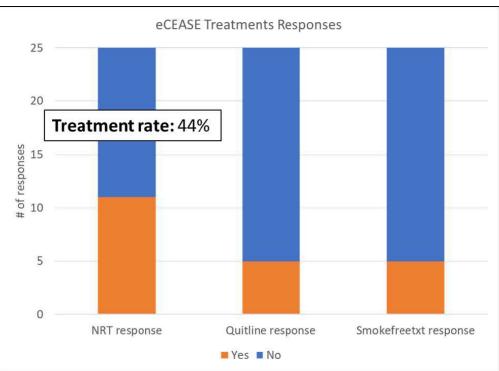


Diabetic Outreach: Paired A1C reduction in Medicaid vs non Medicaid patients

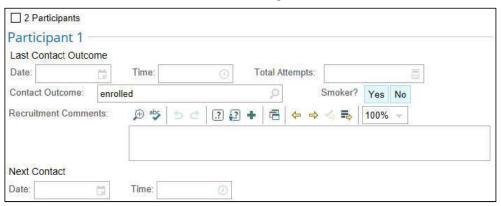


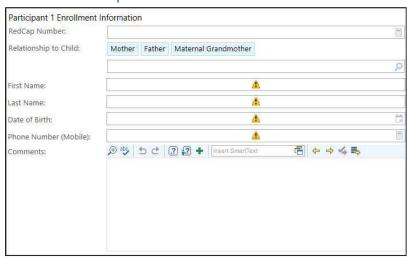
ABC Quit Study: Using biological nicotine screening to reduce pediatric smoke



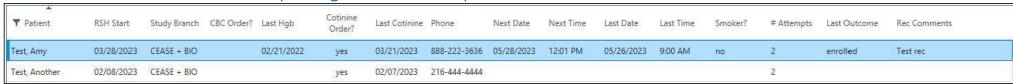

ABC Quit Study: eCEASE system for identification and treatment of caregiver smoking

ABC Quit Study: eCEASE utilization

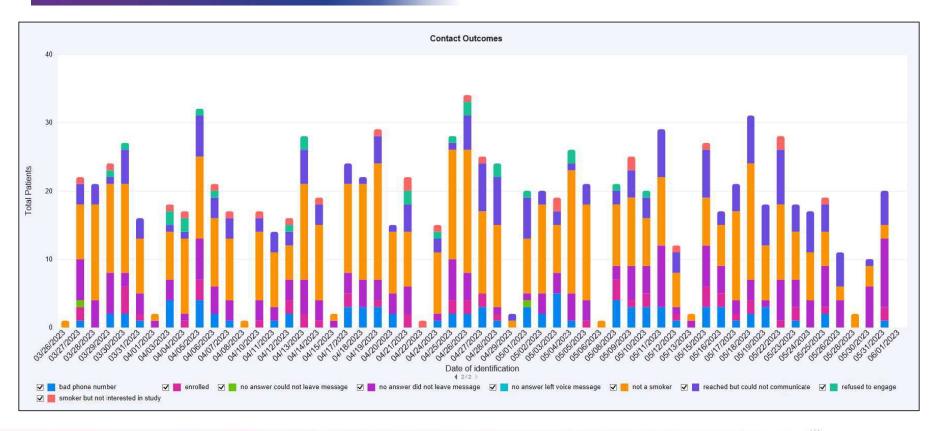




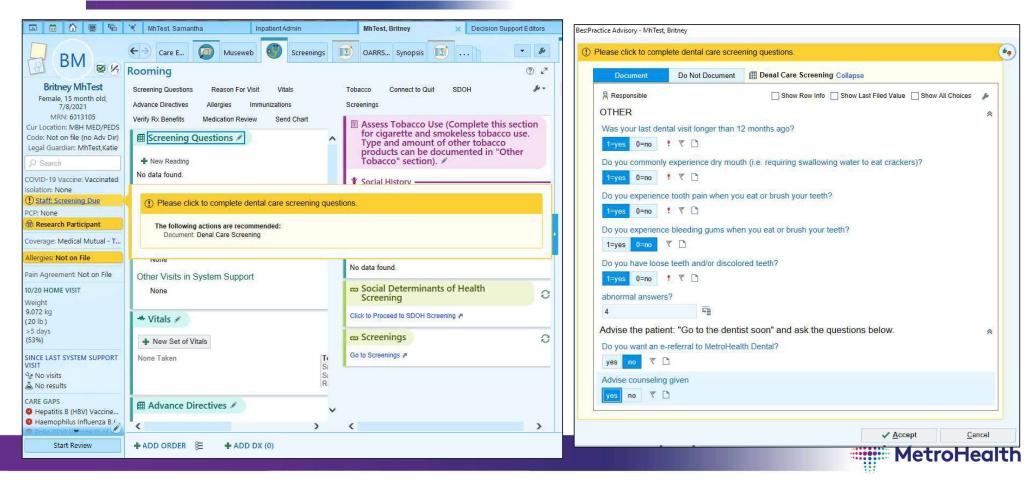
ABC Quit Study: Recruitment outreach tracking and organization


Outreach tracking SmartForm

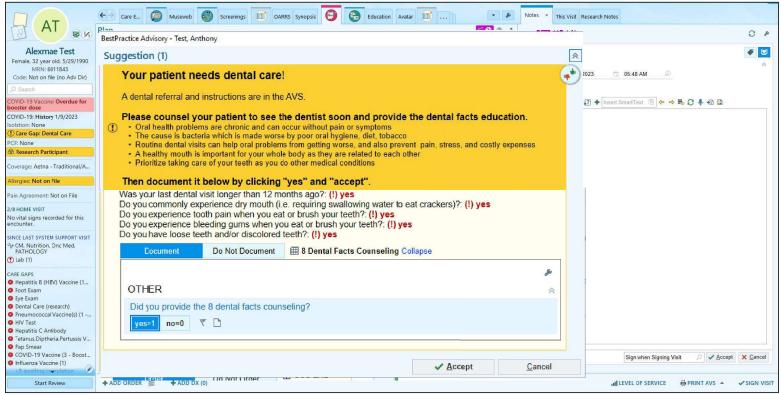
Participant enrollment SmartForm



Reporting workbench report to drive coordinator workflow



ABC Quit Study: Recruitment outreach reporting



Oral health in primary care study: Staff based screening with referral

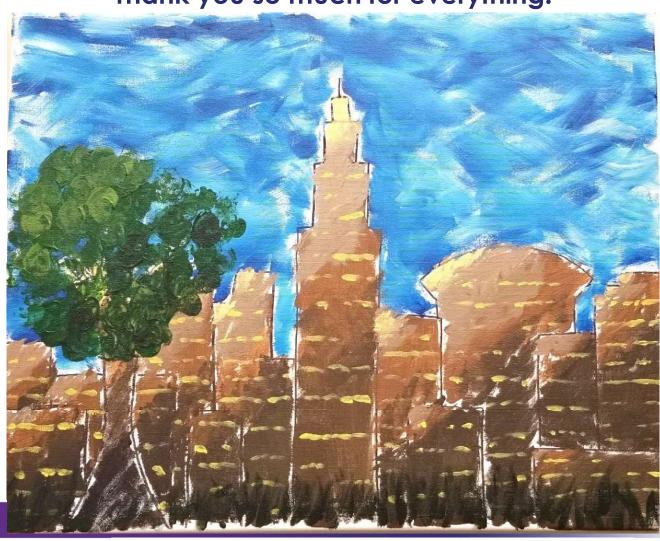
Oral health in primary care study: Provider based education

Nelson S, Kim EGR, Kaelber DC. Integrating Oral Health into Primary Care: Perspectives for Older Adults [published online ahead of print, 2023 Apr 21]. J Dent Res. 2023;220345231165011. doi:10.1177/00220345231165011

MetroHealth

To the future!

Director of Informatics - Virtual Care Enterprise


- Telemedicine
- Care Companion for maternity, track my health, patient education
- Hello World
- Virtual Chronic Disease Management and Hospital in the Home
- Equity in digital care!

Research informatics

- Continuing support to the PARTICS Implementation Project, Oral Health in Primary Care Project, and NIDA Project
- · Recruitment outreach tracking
- Lab information systems automated line
- Clinical decision support for research
- Disparities in digital care!

Thank you so much for everything!

